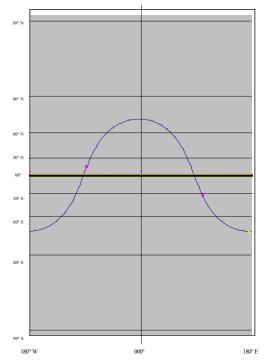
INTERROGATION DE NAVIGATION

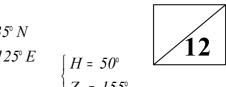
à remettre au CDI le vendredi 19 janvier 2007 avant 16h30	Cours: orthodromie astronomie	
duree 1 semaine	tout candidat pris en flagrant délit de fraude ou convaincu de tentative de fraude sera immédiatement exclu de la salle d'examen et risque l'exclusion temporaire ou définitive de toute école et d'une ou plusieurs sessions d'examen sans préjudice de l'application des sanctions prévues par les lois et règlements en vigueur réprimant les fraudes dans les examens et concours publics	20

1 ORTHODROMIE

Vous êtes au Sud-Ouest de l'Australie au point A et vous souhaitez vous rendre en Amérique centrale au point B :



$$\begin{cases} \varphi_A = 35^{\circ} 20' S \\ G_A = 100^{\circ} 12' E \end{cases} \qquad \begin{cases} \varphi_B = 13^{\circ} 19' N \\ G_B = 088^{\circ} 48' W \end{cases}$$


La route orthodromique fait gagner 415 M sur la route loxodromique (qui survole le continent australien !) mais descend près du continent Antarctique : la latitude du vertex V est $\varphi_v = 71^{\circ}49,7'S$.

Vous décidez donc de ne pas descendre plus au Sud que le 60ème parallèle en suivant un parcours mixte :

- une route orthodromique de A jusqu'à 60°S;
- puis le parallèle de latitude 60°S;
- enfin une route orthodromique de 60°S à B.

- a) calculer la longitude des points extrêmes C et D de la route longeant le parallèle 60°S
- b) calculer la longitude du point E où votre route franchit l'équateur
- c) calculer la latitude du point F où votre route franchit la ligne de changement de date (180°W)
- d) <u>dessiner un planisphère en projection de Mercator (largeur de la page) et placer approximativement les points A, B, C, D, E, F, V ainsi que les routes loxodromique, orthodromique puis le parcours mixte. Le but de cette question n'est pas d'obtenir une carte précise mais de situer les routes et les points entre eux ; pour cela, on pourra placer la ligne de changement de date au milieu de la carte.</u>

- a) dessiner une sphère locale pour la position puis placer l'astre situé aux coordonnées suivantes et en déduire ses coordonnées équatoriales : Ahag et D
- b) dessiner une sphère locale pour la position puis placer l'astre situé aux coordonnées suivantes et en déduire ses coordonnées horizontales : H et Z_v $\begin{cases} \phi_B = 40^{\circ} S \\ G_B = 040^{\circ} W \\ D = N15^{\circ} \end{cases}$
- c) le 15 janvier 2007 à 10h00 T_{cf} un point estimé vous place à la position $\begin{cases} \varphi_I = 15^{\circ} S \\ G_I = 170^{\circ} E \end{cases}$

A cette heure-là, vous observez le bord inférieur du soleil à la hauteur H_i = 63° 18′

les corrections sont les suivantes :

excentricité $\varepsilon = 1,5'$ collimation c = -0,3'

hauteur de l'oeil 25 mètres

Les calculs vous donnent $Z_v = 108^\circ$ et i = +3,7 M. Votre navire suit une route-fond $R_f = 075^\circ$ à la vitesse-fond $V_f = 0.000$

Votre navire suit une route-fond $R_f = 075^{\circ}$ à la vitesse-fond $V_f = 20$ nds. Quelle est l'heure de la méridienne ?

A l'instant de la méridienne, vous observez le bord inférieur du soleil à la hauteur $H_i = 83^{\circ} 25'$ les corrections sont les suivantes : excentricité $\varepsilon = 0,5'$ positon estimée à collimation c = -0,3' l'instant de l'observation hauteur de l'oeil 25 mètres $\begin{cases} \varphi_2 = 14^{\circ} 50,9'S \\ 0 = 170^{\circ} 35,3/F \end{cases}$

hauteur de l'oeil 25 mètres $G_2 = 14^{\circ} 50.9^{\circ} S$ $G_2 = 170^{\circ} 35.3^{\circ} E$

A 17h00 T_{cf} vous observez une dernière fois le bord inférieur du soleil à la hauteur H_i = 14° 05′ les corrections sont les suivantes : excentricité ε = 1,5′ positon estimée à collimation c = -0,3′ l'instant de l'observation hauteur de l'oeil 25 mètres ϕ_3 = 14° 23,8′ S ϕ_3 = 172° 19,8′ E

Tracer un canevas à l'échelle locale et placer le point estimé de 17h00 T_{cf} ainsi que les droites de hauteur précédentes puis lire le point astronomique de 17h00 T_{cf}

- d) <u>calculer l'heure et l'azimut et l'azimut du soleil à son coucher</u> le 15 janvier 2007 pour un observateur situé à la position $\begin{cases} \varphi_5 = 48^{\circ} S \\ G_5 = 163^{\circ} E \end{cases}$
- e) <u>calculer votre latitude sachant que vous observez l'étoile polaire</u> à la hauteur $H_v = 42^{\circ} 37.8'$ le 15 janvier 2007 à la longitude $G = 013^{\circ} 13.8'W$ à 13h13 T_{cf}
- f) calculer la variation du compas sachant que vous observez l'étoile polaire dans l'azimut $Z_v = 005^\circ$ le 15 janvier 2007 à 13h13 T_{cf} depuis la $G_6 = 47^\circ N$ position suivante $G_6 = 013^\circ 13.8' E$
- g) calculer la date et l'heure T_{cf} du début du printemps en 2007 pour un observateur à la position suivante (cette question est subsidiaire et donnera un $21^{\text{ème}}$ point) $\begin{cases} \varphi_7 = 37^{\circ} N \\ G_7 = 025^{\circ} W \end{cases}$

EPHEMERIDES DU DIMANCHE 14 JANVIER 2007

Heure	SOLEIL			ı	LUNE			 Со	ucher du 9		LA1
U.T.	A Hvo	D	A Hao	٧	D	d	π	Z	Coucher	Fin du crépus.	TUD
00 01 02 03 04 05	192 48,4 21 207 48,2 21 222 48,0 21 237 47,8 21	1 24,6 1 24,1 1 23,7 1 23,3 1 22,8 1 22,4	246 14,1 260 45,0 275 15,8 289 46,5 304 17,1 318 47,6	11,9 11,8 11,7 11,6 11,5 11,4	\$ 22 17,1 22 26,6 22 36,0 22 45,3 22 54,6 23 03,7	9,5 9,4 9,3 9,2 9,1 9,0	55,2 55,2 55,2 55,3 55,3 55,3	201 211 217 222	13 39 14 22 14 50 15 11	14 57 15 22 15 42 15 58 16 11	70:1 68 66 64 62 I
06 07 08 09 10	282 47,1 21 297 46,8 21 312 46,6 21 327 46,4 21	1 22,0 1 21,5 1 21,1 1 20,6 1 20,2 1 19,8		11,3 11,2 11,1 11,0 10,9 10,8	\$ 23 12,8 23 21,7 23 30,5 23 39,3 23 47,9 23 56,4	8,9 8,8 8,7 8,6 8,5 8,4	55,3 55,4 55,4 55,4 55,4 55,4	225 229 231 233 235 237	15 29 15 43 15 56 16 07 16 16	16 22 16 32 16 41 16 48 16 55 17 02	58 56 54 52 50
12 13 14 15 16	12 45,7 21 27 45,5 21 42 45,2 21 57 45,0 21	1 19,3 1 18,9 1 18,4 1 18,0 1 17,6 1 17,1	60 18,3 74 48,0 89 17,6 103 47,0 118 16,4 132 45,7	10,7 10,6 10,5 10,4 10,3 10,2	\$ 24 04,8 24 13,2 24 21,4 24 29,4 24 37,4 24 45,3	8,3 8,2 8,1 8,0 7,9 7,8	55,5 55,5 55,5 55,6 55,6 55,6	240 243 244 246 248 249	16 43 16 58 17 10 17 21 17 40 17 57	17 16 17 28 17 38 17 47 18 04 18 20	45 40 35 30 20 10
18 19 20 21 22 23	102 44,3 21 117 44,1 21 132 43,9 21 147 43,6 21 162 43,4 21	1 16,7 1 16,2 1 15,8 1 15,3 1 14,9 1 14,4	147 14,8 161 43,9 176 12,8 190 41,7 205 10,4 219 39,1	10,1 10,0 9,8 9,7 9,6 9,5	\$ 24 53,0 25 00,7 25 08,2 25 15,6 25 22,9 25 30,0	7,6 7,5 7,4 7,3 7,2 7,0	55,6 55,7 55,7 55,7 55,7 55,8	249 248 247 245 243 241 238	18 13 18 29 18 46 19 05 19 17 19 30 19 46	18 35 18 51 19 10 19 32 19 46 20 02 20 22	0 10 20 30 35 40 45
24	1/2 Diam.=16,3	1 14,0 d=0,4	234 07,6 1/2 Diam.	9,4 =15,1	\$ 25 37,1 Age=24,4	6,9 1 j	55,8 DQ	234 233 230 228	20 06 20 15 20 26 20 38	20 48 21 01 21 15 21 33	50 5 52 5 54 56 5

EPHEMERIDES DU LUNDI 15 JANVIER 2007 (DEBUT)

					DD D C		101	1001	11 1 7 11	<i></i>	OUT (DEBCT)	
Heure	90	LEIL			LUNE			Lev	er du Sol	eil		LATI-
neure	30	LLIL			CONC			Début				TUDE
	A		A		_		_	de	Lever	Z		1,005
U.T.	A Hvo	D	A Hao	٧	D	d	π	l'aube				
h	(()) 4 TT(()) 0	0.04394.0	004007.0	0.4	000 T 4	١.	55.0	h_m		· _ 🐰		70 H
00 01	177% 43,2	S 21°14,0	234 97,6	9,4	S 25°37,1	6,9	55,8	9 19 8 54	S.S.H. 10 35	158		68
02	192 43,0 207 42,7	21 13,5 21 13,1	248 36,1 263 04,4	9,3	25 44,0 25 50,8	6,8	55,8 55,8	8 35	9 54	149		66
02	207 42,7	21 12,6	277 32,6	9,2	25 57,4	6,7 6,5		8 20	9 27	143		64
04	237 42,3	21 12,0	292 00,7	9,1 9,0	26 04,0	6,4	55,9 55,9	8 07	9 05	138		62 N
05	252 42,1	21 11,7	306 28,8	8,9	26 10,4	6,3	55,9	1000	3 03	130		02 14
03	202 42,1	21 11,1	300 20,0	0,5	20 10,4	0,5	33,3	7 56	8 48	134		60 N
06	267 41,8	S 21 11,3	320 56,7	8,8	S 26 16,7	6,1	56,0	7 46	8 34	131		58
07	282 41,6	21 10,8	335 24,5	8,7	26 22,8	6,0	56,0	7 37	8 22	129		56
08	297 41,4	21 10,4	349 52,3	8,6	26 28,8	5,9	56,0		8 11	126		54
09	312 41,2	21 09,9	4 19,9	8,5	26 34,7	5,7	56,0	7 23	8 02	125		52 N
10	327 40,9	21 09,4	18 47,4	8,4	26 40,4	5,6	56,1					"- "
11	342 40,7	21 09,0	33 14,8	8,3	26 46,0	5,5	56,1	7 16	7 53	123		50 N
	- 1- 1-1	,-	,-	- 1-		-,-		7 02	7 35	120		45
12	357 40,5	S 21 08,5	47 42,2	8,2	S 26 51,5	5,3	56,1	6 51	7 20	117		40
13	12 40,3	21 08,1	62 09,4	8,1	26 56,8	5,2	56,2	6 40	7 08	116		35
14	27 40,0	21 07,6	76 36,6	8,0	27 02,0	5,0	56,2	6 31	6 57	114		30 N
15	42 39,8	21 07,2	91 03,6	8,0	27 07,1	4,9	56,2					
16	57 39,6	21 06,7	105 30,6	7,9	27 12,0	4,8	56,3	6 14	6 38	112		20 N
17	72 39,4	21 06,2	119 57,4	7,8	27 16,7	4,6	56,3	5 59	6 21	111		10 N
	•							5 44	6 06	111		0
18	87 39,2	S 21 05,8	134 24,2	7,7	S 27 21,4	4,5	56,3	5 27	5 50	112		10 S
19	102 38,9	21 05,3	148 50,9	7,6	27 25,8	4,3	56,3	5 09	5 33	113		20 S
20	117 38,7	21 04,8	163 17,5	7,5	27 30,1	4,2	56,4					
21	132 38,5	21 04,4	177 44,0	7,4	27 34,3	4,0	56,4	4 47	5 13	115		30 S
22	147 38,3	21 03,9	192 10,4	7,3	27 38,3	3,9	56,4	4 33	5 02	117		35
23	162 38,1	21 03,4	206 36,7	7,2	27 42,2	3,7	56,5	4 17	4 48	119		40
								3 57	4 33	122		45
24	177 37,8	S 21 03,0	221 03,0	7,2	S 27 45,9	3,6	56,5	3 31	4 13	125		50 S
								3 18	4 04	127		52 S
	1 /2 Diam =1	6,3 d=0,5	1/2 Diam.=	153	Age=25,4	1 i	DQ	3 04	3 53	129		54
	172 Digiti.=1	0,5 u-0,5	172 Diam.=	درد،	Mg6-25,	7)	500	2 46	3 41	132		56 S
								2 40	5 41	132		303

EPHEMERIDES DU LUNDI 15 JANVIER 2007 (SUITE)

Heure	Point	VE	NUS	M.	ARS	JUF	ITER	SAT	TURNE	Heure
U.T.	Vernal A Hso	A Hao	D	A Hao	D	A Hao	D	A Hao	D	U.T.
00 01 02 03 04 05	114 04,1 129 06,6 144 09,0 159 11,5 174 14,0 189 16,4	157 32,9 172 32,2 187 31,5 202 30,8 217 30,2 232 29,5	S 18 14,0 18 13,1 18 12,2 18 11,3 18 10,4 18 09,5	205 34,8 220 35,3 235 35,8 250 36,2 265 36,7 280 37,1	\$ 23 53,3 23 53,3 23 53,4 23 53,4 23 53,4 23 53,5	224 34,3 239 36,3 254 38,2 269 40,2 284 42,1 299 44,1	\$ 21 24,1 21 24,2 21 24,3 21 24,3 21 24,4 21 24,5	327 39,7 342 42,4 357 45,0 12 47,6 27 50,2 42 52,8	14 48,6 14 48,7 14 48,8 14 48,8 14 48,9 14 48,9	00 01 02 03 04 05
06 07 08 09 10	204 18,9 219 21,4 234 23,8 249 26,3 264 28,8 279 31,2	247 28,8 262 28,1 277 27,4 292 26,7 307 26,0 322 25,3	\$ 18 08,6 18 07,8 18 06,9 18 06,0 18 05,1 18 04,2	295 37,6 310 38,1 325 38,5 340 39,0 355 39,4 10 39,9	\$ 23 53,5 23 53,6 23 53,6 23 53,7 23 53,7 23 53,8	314 46,0 329 48,0 344 50,0 359 51,9 14 53,9 29 55,8	\$ 21 24,5 21 24,6 21 24,7 21 24,7 21 24,8 21 24,9	57 55,5 72 58,1 88 00,7 103 03,3 118 06,0 133 08,6	N 14 49,0 14 49,1 14 49,1 14 49,2 14 49,2 14 49,3	06 07 08 09 10
12 13 14 15 16 17	294 33,7 309 36,1 324 38,6 339 41,1 354 43,5 9 46,0	337 24,7 352 24,0 7 23,3 22 22,6 37 21,9 52 21,2	\$ 18 03,3 18 02,4 18 01,5 18 00,6 17 59,7 17 58,8	25 40,3 40 40,8 55 41,3 70 41,7 85 42,2 100 42,6	\$ 23 53,8 23 53,8 23 53,9 23 53,9 23 54,0 23 54,0	44 57,8 59 59,8 75 01,7 90 03,7 105 05,6 120 07,6	\$ 21 24,9 21 25,0 21 25,1 21 25,1 21 25,2 21 25,3	148 11,2 163 13,8 178 16,4 193 19,1 208 21,7 223 24,3	N 14 49,4 14 49,4 14 49,5 14 49,6 14 49,6 14 49,7	12 13 14 15 16 17
18 19 20 21 22 23	24 48,5 39 50,9 54 53,4 69 55,9 84 58,3 100 00,8	82 19,9 97 19,2 112 18,5 127 17,8 142 17,1	S 17 57,9 17 57,0 17 56,1 17 55,2 17 54,3 17 53,4 S 17 52,5	115 43,1 130 43,6 145 44,0 160 44,5 175 44,9 190 45,4 205 45,8	\$ 23 54,0 23 54,1 23 54,1 23 54,2 23 54,2 23 54,2 8 23 54,3	135 09,6 150 11,5 165 13,5 180 15,4 195 17,4 210 19,4 225 21,3	\$ 21 25,3 21 25,4 21 25,5 21 25,5 21 25,6 21 25,7 \$ 21 25,7	238 26,9 253 29,6 268 32,2 283 34,8 298 37,4 313 40,1 328 42,7	N 14 49,7 14 49,8 14 49,9 14 50,0 14 50,0 N 14 50,1	18 19 20 21 22 23
		v= -0,7 maq.= -3,7	d=0,9 π= 0,1	v=+0,5 maq.=+1,6	d=0,0 π=0,1	v=+2,0 maq.= -1,3	d=0,1 π= 0,0	v=+2,6 maq.=+0,3	d=0,1 π= 0,0	

EPHEMERIDES DU MARDI 16 JANVIER 2007

				121,				D1 10 9/1/17 1E1		· ·		
Heure	so	LEIL			LUNE				Co	oucher du S	oleil	LATI-
U.T.	A Hvo	D	A Hao	٧	D	d	π		z	Coucher	Fin du crépus.	TUDE
00 01 02 03 04 05	177° 37,8 192 37,6 207 37,4 222 37,2 237 37,0 252 36,8	\$ 21 03,0 21 02,5 21 02,0 21 01,6 21 01,1 21 00,6	221 63,0 235 29,1 249 55,2 264 21,2 278 47,1 293 13,0	7,2 7,1 7,0 6,9 6,8 6,8	\$ 27 45,9 27 49,5 27 52,9 27 56,1 27 59,2 28 02,2	3,6 3,4 3,3 3,1 2,9 2,8	56,5 56,5 56,6 56,6 56,6 56,7		203 212 218 223	13 50 14 29 14 56 15 17	15 04 15 28 15 47 16 02 16 15	70 H 68 66 64 62 H
06 07 08 09 10	267 36,5 282 36,3 297 36,1 312 35,9 327 35,7 342 35,5	\$ 21 00,2 20 59,7 20 59,2 20 58,8 20 58,3 20 57,8	307 38,7 322 04,4 336 30,1 350 55,6 5 21,1 19 46,5	6,7 6,6 6,6 6,5 6,4 6,3	\$ 28 05,0 28 07,6 28 10,0 28 12,3 28 14,5 28 16,4	2,6 2,5 2,3 2,1 2,0 1,8	56,7 56,7 56,7 56,8 56,8 56,8		226 229 232 234 236	15 33 15 47 15 59 16 10 16 19	16 26 16 35 16 44 16 51 16 58	60 N 58 56 54 52 N 50 N
12 13 14 15 16	357 35,2 12 35,0 27 34,8 42 34,6 57 34,4 72 34,2	\$ 20 57,3 20 56,9 20 56,4 20 55,9 20 55,4 20 54,9	34 11,8 48 37,1 63 02,4 77 27,5 91 52,6 106 17,7	6,3 6,2 6,2 6,1 6,0 6,0	\$ 28 18,2 28 19,9 28 21,3 28 22,6 28 23,8 28 24,7	1,6 1,5 1,3 1,1 1,0 0,8	56,9 56,9 56,9 57,0 57,0		241 243 245 246 248 249	16 45 17 00 17 12 17 23 17 42 17 58	17 18 17 30 17 40 17 49 18 05 18 21	45 40 35 30 N 20 N
18 19 20 21 22 23	87 34,0 102 33,7 117 33,5 132 33,3 147 33,1 162 32,9	\$ 20 54,5 20 54,0 20 53,5 20 53,0 20 52,5 20 52,1	120 42,7 135 07,6 149 32,5 163 57,3 178 22,1 192 46,9	5,9 5,9 5,8 5,8 5,7 5,7	\$ 28 25,5 28 26,1 28 26,6 28 26,9 28 27,0 28 26,9	0,6 0,5 0,3 0,1 0,1 0,2	57,1 57,1 57,1 57,2 57,2 57,2		249 249 247 245 244 241 239	18 13 18 29 18 46 19 05 19 16 19 30 19 45	18 36 18 52 19 10 19 32 19 45 20 01 20 21	0 10 S 20 S 30 S 35 40 45
24	177 32,7 1/2 Diam.=1	\$ 20 51,6 6,3 d=0,5	207 11,6 1/2 Diam.s	5,7 =15,5	\$ 28 26,7 Age=26,4	0,4 4 j	57,3 DQ		235 233 231 229	20 04 20 14 20 24 20 36	20 46 20 58 21 13 21 30	50 S 52 S 54 56 S

LATITUDE PAR L'ETOILE POLAIRE – 2007 (DEBUT)

<u>Table A. - PremiÞre correction Ó la hauteur</u>

							А	rgument	t : Angle	horaire	e sidUra	l local : .	AHsg							
	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	
333	-	-	- 1	-	-	- 1	1	-	- 1	1	1	1	-	-	-	-	-	-	-	
0,0	-32,2	-36,4	-39,5	-41,4	-42,1	-41,4	-39,5	-36,4	-32,2	-27,1	-21,1	-14,4	- 7,3	+ 0,0	+ 7,3	+14,4	+21,0	+27,0	+32,2	0,0
0,5	-32,4	-36,6	-39,6	-41,5	-42,1	-41,4	-39,4	-36,3	-32,0	-26,8	-20,7	-14,1	- 7,0	+ 0,3	+ 7,6	+14,7	+21,3	+27,3	+32,4	0,5
1,0	-32,7	-36,8	-39,8	-41,5	-42,1	-41,3	-39,3	-36,1	-31,8	-26,5	-20,4	-13,7	- 6,6	+ 0,7	+ 8,0	+15,1	+21,6	+27,6	+32,7	1,0
1,5	-32,9	-37,0	-39,9	-41,6	-42,1	-41,2	-39,2	-35,9	-31,5	-26,2	-20,1	-13,4	- 6,2	+ 1,1	+ 8,4	+15,4	+22,0	+27,9	+32,9	1,5
2,0	-33,1	-37,1	-40,0	-41,7	-42,0	-41,2	-39,0	-35,7	-31,3	-25,9	-19,8	-13,0	- 5,9	+ 1,4	+ 8,7	+15,7	+22,3	+28,1	+33,1	2,0
2,5	-33,4	-37,3	-40,1	-41,7	-42,0	-41,1	-38,9	-35,5	-31,0	-25,6	-19,5	-12,7	- 5,5	+ 1,8	+ 9,1	+16,1	+22,6	+28,4	+33,4	2,5
3,0	-33,6	-37,5	-40,2	-41,8	-42,0	-41,0	-38,7	-35,3	-30,8	-25,3	-19,1	-12,3	- 5,2	+ 2,2	+ 9,4	+16,4	+22,9	+28,7	+33,6	3,0
3,5	-33,8	-37,6	-40,3	-41,8	-42,0	-40,9	-38,6	-35,1	-30,5	-25,0	-18,8	-12,0	- 4,8	+ 2,5	+ 9,8	+16,7	+23,2	+28,9	+33,8	3,5
4,0	-34,0	-37,8	-40,4	-41,8	-42,0	-40,8	-38,4	-34,9	-30,3	-24,8	-18,5	-11,6	- 4,4	+ 2,9	+10,2	+17,1		+29,2	+34,0	4,0
4,5	-34,2	-38,0	-40,5	-41,9	-41,9	-40,7	-38,3	-34,7	-30,0	-24,5	-18,1	-11,3	- 4,1	+ 3,3	+10,5	+17,4	+23,8	+29,5	+34,2	4,5
5,0	-34,4	-38,1	-40,6	-41,9	-41,9	-40,6	-38,1	-34,5	-29,8	-24,2	-17,8	-10,9	- 3,7	+ 3,6	+10,9	+17,8	+24,1	+29,7	+34,4	5,0
5,5	-34,7	-38,3	-40,7	-41,9	-41,9	-40,5	-38,0	-34,3	-29,5	-23,9	-17,5	-10,6	- 3,3	+ 4,0	+11,2	+18,1	+24,4	+30,0	+34,7	5,5
6,0	-34,9	-38,4	-40,8	-42,0	-41,8	-40,5	-37,8	-34,1	-29,2	-23,6	-17,1	-10,2	- 3,0	+ 4,4	+11,6	+18,4	+24,7	+30,2	+34,9	6,0
6,5	-35,1	-38,6	-40,9	-42,0	-41,8	-40,3	-37,7	-33,8	-29,0	-23,2	-16,8	- 9,8	- 2,6	+ 4,7	+11,9	+18,7	+25,0	+30,5	+35,1	6,5
7,0	-35,3	-38,7	-41,0	-42,0	-41,8	-40,2	-37,5	-33,6	-28,7	-22,9	-16,5	- 9,5	- 2,2	+ 5,1	+12,3	+19,1	+25,3	+30,7	+35,3	7,0
7,5	-35,5	-38,9	-41,1	-42,0	-41,7	-40,1	-37,3	-33,4	-28,4	-22,6	-16,1	- 9,1	- 1,9	+ 5,5	+12,6	+19,4	+25,6	+31,0	+35,5	7,5
8,0	-35,7	-39,0	-41,1	-42,0	-41,7	-40,0	-37,2	-33,2	-28,2	-22,3	-15,8	- 8,8	- 1,5	+ 5,8	+13,0	+19,7	+25,9	+31,2	+35,7	8,0
8,5	-35,9	-39,1	-41,2	-42,1	-41,6	-39,9	-37,0	-32,9	-27,9	-22,0	-15,4	- 8,4	- 1,1	+ 6,2	+13,3	+20,0	+26,2	+31,5	+35,9	8,5
9,0	-36,0	-39,3	-41,3	-42,1	-41,6	-39,8	-36,8	-32,7	-27,6	-21,7	-15,1	- 8,1		+ 6,6	+13,7	+20,4		+31,7	+36,0	9,0
9,5	-36,2	-39,4	-41,4	-42,1	-41,5	-39,7	-36,6	-32,5	-27,3	-21,4	-14,8	- 7,7	- 0,4	+ 6,9	+14,0	+20,7	+26,7	+32,0	+36,2	9,5
10.0	-36,4	-39,5	-41,4	-42,1	-41.4	-39,5	-36,4	-32,2	-27,1	-21,1	-14,4	- 7,3	+ 0.0	+ 7,3	+14,4	+21,0	+27.0	+32,2	+36,4	10,0

							А	rgumen	t : Angle	e horaire	e sidÚra	il local :	AHsg							
	180	190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	350	360	
300	1	1	,		1	- 1	-	1	1	,	1	,	,	ı	ı	1	ı	1	1	
0,0	+32,2	+36,4	+39,5	+41,4	+42,1	+41,4	+39,5	+36,4	+32,2	+27,1	+21,1	+14,4	+ 7,3	+ 0,0	- 7,3	-14,4	-21,0	-27,0	-32,2	0,0
0,5	+32,4	+36,6	+39,6	+41,5	+42,1	+41,4	+39,4	+36,3	+32,0	+26,8	+20,7	+14,1	+ 7,0	- 0,3	- 7,6	-14,7	-21,3	-27,3	-32,4	0,5
1,0	+32,7	+36,8	+39,8	+41,5	+42,1	+41,3	+39,3	+36,1	+31,8	+26,5	+20,4	+13,7	+ 6,6	- 0,7	- 8,0	-15,1	-21,6	-27,6	-32,7	1,0
1,5	+32,9		+39,9	+41,6	+42,1	+41,2	+39,2	+35,9	+31,5	+26,2	+20,1	+13,4	+ 6,2	- 1,1	- 8,4	-15,4	-22,0	-27,9	-32,9	1,5
2,0	+33,1	+37,1	+40,0	+41,7	+42,0	+41,2	+39,0	+35,7	+31,3	+25,9	+19,8	+13,0	+ 5,9	- 1,4	- 8,7	-15,7	-22,3	-28,1	-33,1	2,0
2,5	+33,4	+37,3	+40,1	+41,7	+42,0	+41,1	+38,9	+35,5	+31,0	+25,6	+19,5	+12,7	+ 5,5	- 1,8	- 9,1	-16,1	-22,6	-28,4	-33,4	2,5
3,0	+33,6	+37,5	+40,2	+41,8	+42,0	+41,0	+38,7	+35,3	+30,8	+25,3	+19,1	+12,3	+ 5,2	- 2,2	- 9,4	-16,4	-22,9	-28,7	-33,6	3,0
3,5	+33,8	+37,6	+40,3	+41,8	+42,0	+40,9	+38,6	+35,1	+30,5	+25,0	+18,8	+12,0	+ 4,8	- 2,5	- 9,8	-16,7	-23,2	-28,9	-33,8	3,5
4,0	+34,0	+37,8	+40,4	+41,8	+42,0	+40,8	+38,4	+34,9	+30,3	+24,8	+18,5	+11,6	+ 4,4	- 2,9	-10,2	-17,1	-23,5	-29,2	-34,0	4,0
4,5	+34,2	+38,0	+40,5	+41,9	+41,9	+40,7	+38,3	+34,7	+30,0	+24,5	+18,1	+11,3	+ 4,1	- 3,3	-10,5	-17,4	-23,8	-29,5	-34,2	4,5
5,0	+34,4	+38,1	+40,6	+41,9	+41,9	+40,6	+38,1	+34,5	+29,8	+24,2	+17,8	+10,9	+ 3,7	- 3,6	-10,9	-17,8	-24,1	-29,7	-34,4	5,0
5,5	+34,7	+38,3	+40,7	+41,9	+41,9	+40,5	+38,0	+34,3	+29,5	+23,9	+17,5	+10,6	+ 3,3	- 4,0	-11,2	-18,1	-24,4	-30,0	-34,7	5,5
6,0	+34,9	+38,4	+40,8	+42,0	+41,8	+40,5	+37,8	+34,1	+29,2	+23,6	+17,1	+10,2	+ 3,0	- 4,4	-11,6	-18,4	-24,7	-30,2	-34,9	6,0
6,5	+35,1	+38,6	+40,9	+42,0	+41,8	+40,3	+37,7	+33,8	+29,0	+23,2	+16,8	+ 9,8	+ 2,6	- 4,7	-11,9	-18,7	-25,0	-30,5	-35,1	6,5
7,0	+35,3	+38,7	+41,0	+42,0	+41,8	+40,2	+37,5	+33,6	+28,7	+22,9	+16,5	+ 9,5	+ 2,2	- 5,1	-12,3	-19,1	-25,3	-30,7	-35,3	7,0
7,5	+35,5	+38,9	+41,1	+42,0	+41,7	+40,1	+37,3	+33,4	+28,4	+22,6	+16,1	+ 9,1	+ 1,9	- 5,5	-12,6	-19,4	-25,6	-31,0	-35,5	7,5
8,0	+35,7	+39,0	+41,1	+42,0	+41,7	+40,0	+37,2	+33,2	+28,2	+22,3	+15,8	+ 8,8	+ 1,5	- 5,8	-13,0	-19,7	-25,9	-31,2	-35,7	8,0
8,5	+35,9	+39,1	+41,2	+42,1	+41,6	+39,9	+37,0	+32,9	+27,9	+22,0	+15,4	+ 8,4	+ 1,1	- 6,2	-13,3	-20,0	-26,2	-31,5	-35,9	8,5
9,0	+36,0	+39,3	+41,3	+42,1	+41,6	+39,8	+36,8	+32,7	+27,6	+21,7	+15,1	+ 8,1	+ 0,8	- 6,6	-13,7	-20,4	-26,5	-31,7	-36,0	9,0
9,5	+36,2	+39,4	+41,4	+42,1	+41,5	+39,7	+36,6	+32,5	+27,3	+21,4	+14,8	+ 7,7	+ 0,4	- 6,9	-14,0	-20,7	-26,7	-32,0	-36,2	9,5
10,0	+36,4	+39,5	+41,4	+42,1	+41,4	+39,5	+36,4	+32,2	+27,1	+21,1	+14,4	+ 7,3	+ 0,0	- 7,3	-14,4	-21,0	-27,0	-32,2	-36,4	10,0

LATITUDE PAR L'ETOILE POLAIRE – 2007 (SUITE)

Table B. - DeuxiÞme correction Ó la hauteur

DATE			А	rgument : Ang	gle horaire sid	dÚral local : A	Hsg			DATE
	0	45	90	135	180	225	270	315	360	
		,		,	,				,	
1 janvier	+0,1	+0,1	+0,1	-0,1	-0,1	-0,1	-0,1	+0,1	+0,1	1 janvier
1 fÚvrier	+0,1	+0,2	+0,2	+0,1	-0,1	-0,2	-0,2	-0,1	+0,1	1 fÚvrier
1 mars	+0,0	+0,2	+0,3	+0,2	+0,0	-0,2	-0,3	-0,2	+0,0	1 mars
1 avril	-0,2	+0,1	+0,3	+0,4	+0,2	-0,1	-0,3	-0,4	-0,2	1 avril
1 mai	-0,3	-0,1	+0,2	+0,4	+0,3	+0,1	-0,2	-0,4	-0,3	1 mai
1 juin	-0,4	-0,2	+0,1	+0,3	+0,4	+0,2	-0,1	-0,3	-0,4	1 juin
1 juillet	-0,4	-0,3	-0,1	+0,2	+0,4	+0,3	+0,1	-0,2	-0,4	1 juillet
1 aout	-0,2	-0,3	-0,2	+0,0	+0,2	+0,3	+0,2	+0,0	-0,2	1 aout
1 septembre	-0,1	-0,3	-0,3	-0,1	+0,1	+0,3	+0,3	+0,1	-0,1	1 septembre
1 octobre	+0,1	-0,1	-0,3	-0,3	-0,1	+0,1	+0,3	+0,3	+0,1	1 octobre
1 novembre	+0,3	+0,0	-0,3	-0,4	-0,3	+0,0	+0,3	+0,4	+0,3	1 novembre
1 dÚcembre	+0,4	+0,2	-0,1	-0,4	-0,4	-0,2	+0,1	+0,4	+0,4	1 dÚcembre
31 dÚcembre	+0,5	+0,4	+0,0	-0,3	-0,5	-0,4	+0,0	+0,3	+0,5	31 dÚcembre

<u>Table C. - TroisiÞme correction Ó la hauteur</u>

HAUTEUR			Argument : .	Angle horaire sid	lÚral local : AHsg	j		HAUTEUR
vraie	0 180	30 210	60 240	90 270	120 300	150 330	180 360	vraie
		1						
10	+0,0	+0,0	+0,0	+0,0	+0,0	+0,0	+0,0	10
20	+0,0	+0,0	+0,0	+0,1	+0,1	+0,1	+0,0	20
30	+0,1	+0,0	+0,0	+0,1	+0,1	+0,1	+0,1	30
30 40	+0,1	+0,0	+0,0	+0,1	+0,2	+0,2	+0,1	30 40
50	+0,1	+0,0	+0,0	+0,2	+0,3	+0,3	+0,1	50
50 60	+0,2	+0,0	+0,1	+0,3	+0,4	+0,4	+0,2	50 60
70	+0,3	+0,0	+0,1	+0,4	+0,7	+0,6	+0,3	70
80	+0,6	+0,0	+0,2	+0,9	+1,4	+1,3	+0,6	80

Azimut de l'Etoile Polaire

A Hsg				Arg	gument : Latitude	Nord				A Hsg
, in log	0	10	20	30	40	50	60	70	80	
0	0,5	0,5	0,5	0,5	0,6	0,7	0,9	1,3	2,6	0
20	0,2	0,2	0,3	0,3	0,3	0,4	0,5	0,7	1,4	20
40	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	40
60	359,8	359,8	359,7	359,7	359,7	359,6	359,5	359,3	358,6	60
80	359,5	359,5	359,5	359,5	359,4	359,3	359,1	358,7	357,4	80
100	359,4	359,4	359,4	359,3	359,2	359,1	358,8	358,2	356,5	100
120	359,3	359,3	359,3	359,2	359,1	358,9	358,6	358,0	356,0	120
140	359,3	359,3	359,3	359,2	359,1	358,9	358,6	358,0	356,0	140
160	359,4	359,4	359,4	359,3	359,2	359,1	358,8	358,2	356,5	160
180	359,5	359,5	359,5	359,5	359,4	359,3	359,1	358,7	357,4	180
200	359,8	359,8	359,7	359,7	359,7	359,6	359,5	359,3	358,6	200
220	360,0	360,0	360,0	360,0	360,0	360,0	360,0	360,0	360,0	220
240	0,2	0,2	0,3	0,3	0,3	0,4	0,5	0,7	1,4	240
260	0,5	0,5	0,5	0,5	0,6	0,7	0,9	1,3	2,6	260
280	0,6	0,6	0,6	0,7	0,8	0,9	1,2	1,8	3,5	280
300	0,7	0,7	0,7	0,8	0,9	1,1	1,4	2,0	4,0	300
320	0,7	0,7	0,7	0,8	0,9	1,1	1,4	2,0	4,0	320
340	0,6	0,6	0,6	0,7	0,8	0,9	1,2	1,8	3,5	340
360	0,5	0,5	0,5	0,5	0,6	0,7	0,9	1,3	2,6	360

EPHEMERIDES DU

MARDI 20 MARS 2007

MERCREDI 21 MARS 2007

Heure	so	DLEIL
U.T.	A Hvo	D
00 01 02 03 04 05	178 04,0 193 04,2 208 04,4 223 04,6 238 04,8 253 04,9	0 21,9 0 20,9
06 07 08 09 10	268 05,1 283 05,3 298 05,5 313 05,7 328 05,9 343 06,0	S 0 17,9 0 16,9 0 15,9 0 15,0 0 14,0 0 13,0
12 13 14 15 16	358 06,2 13 06,4 28 06,6 43 06,8 58 07,0 73 07,1	0 11,0
18 19 20 21 22 23	88 07,3 103 07,5 118 07,7 133 07,9 148 08,1 163 08,3	\$ 0 06,1 0 05,1 0 04,1 0 03,1 0 02,1 0 01,1
24	178 08,4	S 0 00,1

Heure	sc	LEIL	
U.T.	A Hvo		D
00 01 02 03 04 05	178 08,4 193 08,6 208 08,8 223 09,0 238 09,2 253 09,4	S N	
06 07 08 09 10	268 09,5 283 09,7 298 09,9 313 10,1 328 10,3 343 10,5	N	0 05,8 0 06,8 0 07,8 0 08,8 0 09,8 0 10,7
12 13 14 15 16	358 10,7 13 10,8 28 11,0 43 11,2 58 11,4 73 11,6	N	0 11,7 0 12,7 0 13,7 0 14,7 0 15,7 0 16,7
18 19 20 21 22 23	88 11,8 103 11,9 118 12,1 133 12,3 148 12,5 163 12,7	N	0 17,7 0 18,6 0 19,6 0 20,6 0 21,6 0 22,6
24	178 12,9	N	0 23,6

CORRECTIONS DE HAUTEUR

CORRECTION DES HAUTEURS OBSERVEES DU SOLEIL. (- rUfraction moyenne - dUpression + parallaxe + demi-diamÞtre)

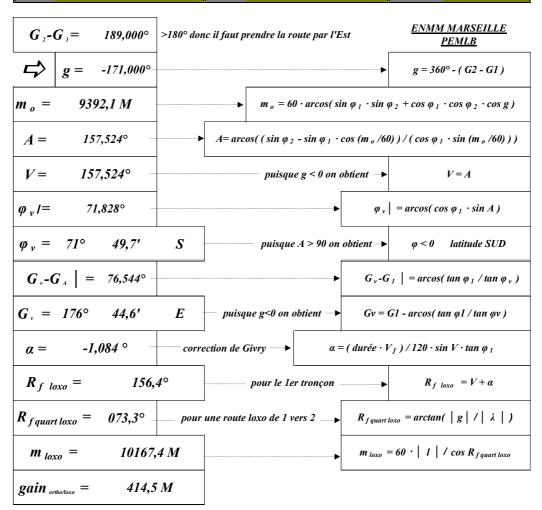
BORD INFERIEUR, PREMIERE CORRECTION.

Hauteur					EL	EVATION D	E L'OEIL					
0bservÚe	24 m	26 m	28 m	30 m	32 m	34 m	36 m	38 m	40 m	42 m	44 m	46 m
7 00 7 20 7 40 8 00 8 20 8 40	+ 0.4 + 0.4 + 0.4 + 0.5 + 1.4 + 1.4	- 0,3 - 0,0 - 0,00 + 0,00 + 1,00	- 0,6 - 0,3 - 0,2 + 0,5 + 0,7	- 0,9 - 0,6 - 0,4 - 0,1 + 0,3	- 1,3 - 1,0 - 0,7 - 0,4 - 0,2	- 1,6 - 1,3 - 1,0 - 0,7 - 0,5 - 0,3	- 1,9 - 1,6 - 1,3 - 1,0 - 0,8 - 0,6	- 2,1 - 1,9 - 1,6 - 1,3 - 1,1 - 0,9	- 2,4 - 2,9 - 1,6 - 1,4 - 1,2	- 2,7 - 2,4 - 2,1 - 1,9 - 1,7	- 3,0 - 2,7 - 2,4 - 2,2 - 1,9 - 1,7	- 3,2 - 2,9 - 2,7 - 2,4 - 2,2 - 2,0
9 00 9 20 9 40 10 00 10 20 10 40	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	++++ -02-224680	+ 0.07.99 + 0.000 + + 1.000 + + 1.000 + + 1.000 + 1.00	+ 00000 + + 00000 + + 1	- + + + + + + + + + + + + + + + + + + +	- 0,4 - 0,0 - 0,000 + + 0,000 + + 0,000	- 0.7 - 0.3 - 0.1 - 0.1 + 0.1 + 0.2	- 0,9 - 0,8 - 0,6 - 0,4 - 0,2 - 0,7	- 1,2 - 1,8 - 0,8 - 0,7 - 0,5 - 0,3	- 1,5 - 1,5 - 1,9 - 0,8 - 0,6	- 1,8 - 1,4 - 1,2 - 1,9 - 0,9
11 00 11 30 12 00 12 30 13 00 13 30	+++++ CNCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	+ + 2257 + + 2257 + + 352 + 372	+ 1.9 + 2.25 + 2.25 + 2.8 + 2.8	+ + + + + + + + + + + + + + + + + + +	++++++++++++++++++++++++++++++++++++++	+ + + + + - + + + + + + 	+ + + + + + + + + + + + + + + + + + +	+ 0.4 + 0.89 + 0.7,3 + 1,3	+ 0.1 + 0.35 + 0.57 + 0.10 + 1.0	- 0,2 + 0,2 + 0,4 + 0,6 + 0,7		- 9.7 - 9.3 - 9.1 - 0.1 + 0.2
14 00 15 00 16 00 17 00 18 00 19 00	7.02-2027 30344444 ++++	ന്നുകളാവുന നാനുക്കുന്നു + + + + + +	+ + + + + + + + + + + + + + + + + + +	+++++ 20000000 10000000	+ + + + + 20000000	+ + + + + + + + + + 0 0 0 0 0 0 0 0 0 0	+ 1.7 + 2.24 + 2.24 + 2.7	+ 1.4 + 1.79 + 22.3 + 2.4	+ 1.4 + 1.46 + 1.22.1 + 2.21	+ + + + + 0 - 1 - 1 - 1 - 0 0 - 1 - 1 - 1 - 0	+ + + + + + + + + + 0 0 4 4 4 6 0	+ 0,36 + 0,00 + 1,13 + 1,3
20 00 22 00 24 00 26 00 28 00 30 00	+++++ ++++++ 00-0000000000000000000000	57-01-034 +++++++	+ 4.1 + 4.689 + 4.451 + 5.1	######################################	57-01-04 +++44 +++	വ്യൂക് നാനന് + + + + + + + + + + + + + + + + + + +	-+++++ 	+++++ +++++	+++++ NONCOCO 20000-10	+ + + + + + + + + + + + + + + + + + +	+ 1.80 + 20.24 + 20.24 + 20.7	+ 1.5 + 1.70 + 2.71 + 2.74 + 2.74
32 00 34 00 36 00 38 00 40 00 45 00	+++++ മമമമമാ വാപ്പ്പ്	17,000,1 14++++	257.45566 55555555 +++++	901204 4555554 ++++++	67.80001 444445 +++++	ოკანდი 444444 +++++	04.4444 44.4444 +++++	+ 333,89 + 44,0 + 44,2	45567-609 ++++++	10000000 000000000 +++++	8000124 ++++++	++++++++++++++++++++++++++++++++++++++
50 00 55 00 60 00 70 00 80 00 90 00	+ + + + + + + + + + + + + + + + + + +	3447 666667 +++++	++++ 5000000 9004000	67,800 <u>0</u> ,	რ.44¼~დ0 არირიი ++++++	+++++ 55555555 5455555	7,809 <u>7,214</u> 4,445555 +++++	444445 +++++	+++++ +++++	8900145 334444 +++++	57-801-0 000444 +++++	უ <u>ტე</u> ტი თოთოთ + + + + + +

CORRECTION DES HAUTEURS OBSERVEES DU SOLEIL. BORD INFERIEUR, DEUXIEME CORRECTION.

Janvier	FÚvrier	Mars	Avril	Mai	Juin	Juillet	Aout	Septembre	Octobre	Novembre	DÚcembre
+0,3	+ 0,2	, + 0,1	0,0	, - 0,2	, - 0,2	, - 0,2	, - 0,2	- 0,1	, + 0,1	+ 0,2	+ 0,3

CORRECTION DES HAUTEURS OBSERVEES DU SOLEIL. BORD SUPERIEUR, DEUXIEME CORRECTION.


Janvier	FÚvrier	Mars	Avril	Mai	Juin	Juillet	Aout	Septembre	Octobre	Novembre	DÚcembre
-32,3	, -32,2	-32,1	-32,0	, -31,8	, -31,8	, -31,8	-31,8	, -31,9	-32,1	-32,2	-32,3

<u>CORRECTION</u>

1 ORTHODROMIE

saisie des informations

	position	ı de départ	:		position	d'arrivée	1er	r tronçon		
\varphi_1 =	35°	20,0'	S	arphi 2 =	<i>13</i> °	19,0'	N	Durée =	24 heures	
G_{I} =	100°	12,0'	E	G ₂ =	088°	48,0'	W	$V_f =$	20,0 nd	

a)
$$G_V = G_I \pm arcos\left(\frac{tan(\varphi_I)}{tan(\varphi_V)}\right)$$
 donc $G_C = -100^{\circ}12' - arcos\left(\frac{tan(-35^{\circ}20')}{tan(-60^{\circ})}\right)$ avec un signe – devant

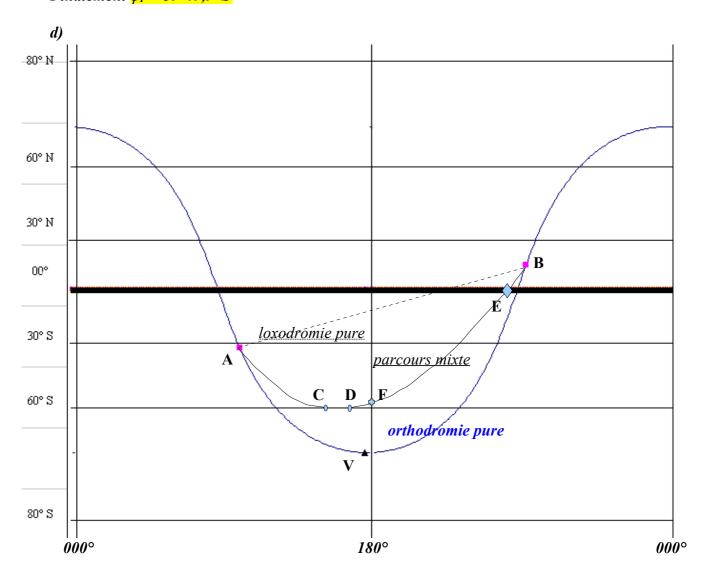
l'arc-cosinus car de A vers B le parcours le plus court est vers l'Est. Finalement $G_C = 166^{\circ}02,4'E$

De même $G_D = 088^{\circ} 48' + arcos \left(\frac{tan(13^{\circ} 19')}{tan(-60^{\circ})} \right)$ avec un signe + devant l'arc-cosinus car de B vers

A le parcours le plus court est vers l'Ouest. Finalement $G_D = +186°39,3'$ soit $G_D = 173°20,7'$ E

c) l'équateur ($\varphi_E = 00^\circ N = 00^\circ S$) est situé entre les points D ($\varphi_D = 60^\circ S$) et B ($\varphi_B = 13^\circ 19'N$) donc sur la seconde route orthodromique, de vertex D.

D'après la formule
$$G_V = G_1 \pm arcos\left(\frac{tan(\varphi_I)}{tan(\varphi_V)}\right)$$
 on obtient $G_E = G_D - \pm arcos\left(\frac{tan(\varphi_E)}{tan(\varphi_D)}\right)$ où \pm est


remplacé par + car de D vers le point de franchissement de l'équateur on fait route vers l'Ouest.

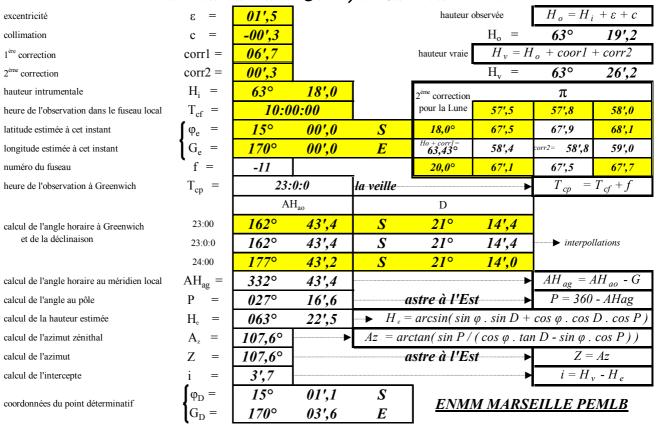
Alors
$$G_E = -173°20,7' - arcos\left(\frac{tan(00°)}{tan(-60°)}\right)$$

soit $G_E = -173^{\circ}20.7' - 90^{\circ}$: on retrouve le résultat liant la longitude des vertex et des noeuds : ils sont séparés de 90° de longitude vers l'Est ou l'Ouest. Finalement $G_E = -263^{\circ}20.7'$ soit $G_E = 096^{\circ}39.3'$ W

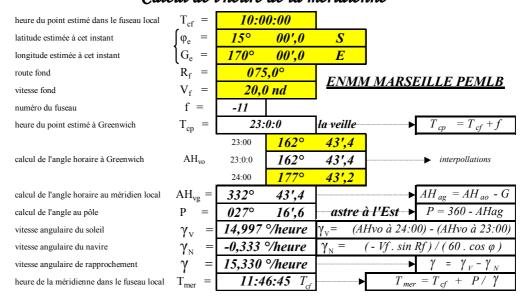
c)
$$G_V = G_I \pm arcos\left(\frac{tan(\varphi_I)}{tan(\varphi_V)}\right) donc \ \varphi_I = arctan(tan(\varphi_V) \cdot cos(G_V - G_I))$$

la ligne de changement de date ($G_F = 180^{\circ} W = 180^{\circ} E$) est située entre les points D ($G_D = 173^{\circ}20,7'E$) et B ($G_B = 88^{\circ}48'W$) donc sur la seconde route orthodromique, de vertex D. alors $\varphi_F = \arctan(\tan(\varphi_D) \cdot \cos(G_D - G_F)) = \arctan(\tan(-60^{\circ}) \cdot \cos(-173^{\circ}20,7'-180^{\circ}))$ Finalement $\varphi_F = 59^{\circ}49,9'S$

2 ASTRONOMIE

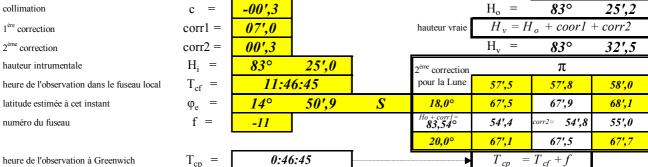

a)

u)							
latitude estimée à cet instant	$\int \phi_e =$	35°	00',0	N			
longitude estimée à cet instant	$G_e =$	<i>125</i> °	00',0	E			
numéro du fuseau	f =	-8					
heure de l'observation à Greenwich	$T_{cp} =$	9:0	0:0			····	$T_{cp} = T_{cf} + f$
		Al	H _{ao}		D		
calcul de l'angle horaire à Greenwich	9:00	<i>220</i> °	00',0	S	<i>02</i> °	00',0	
et de la déclinaison	9:0:0	<i>220</i> °	00',0	S	<i>02</i> °	00',0	interpollations
	10:00	220°	00',0	S	<i>02</i> °	00',0	
calcul de l'angle horaire au méridien local	$AH_{ag} =$	345°	00',0				$AH_{ag} = AH_{ao} - G$
calcul de l'angle au pôle	P =	<i>015</i> °	00',0	a	stre à l'E	st -	P = 360 - $AHag$
calcul de la hauteur estimée	$H_e =$	<i>050</i> °	25',2	► H _e =	arcsin(sin	φ . sin D +	$\cos \varphi \cdot \cos D \cdot \cos P$
calcul de l'azimut zénithal	$A_z =$	<i>156,0</i> °	——	Az = arc	tan(sin P	' (cos φ . tar	$(D - \sin \varphi \cdot \cos P))$
calcul de l'azimut	Z =	<i>156,0</i> °		a	stre à l'E	st	Z = Az
			_			-	


<i>D)</i>								
latitude estimée à cet instant	$\int \phi_e =$	40°	00',0	S	18,0°	67',5	67',9	68′,1
longitude estimée à cet instant	$G_e =$	<i>040</i> °	00',0	W	Ho + corrl = 00,00 °	71',1	corr2= 71',5	71',7
numéro du fuseau	f =	+3		_	20,0°	67',1	67',5	67',7
heure de l'observation à Greenwich	$T_{cp} =$	20:	0:0			———	$T_{cp} =$	$T_{cf} + f$
		Al	H _{ao}		D			
calcul de l'angle horaire à Greenwich	20:00	<i>340</i> °	00',0	N	15°	00',0		
et de la déclinaison	20:0:0	<i>340</i> °	00',0	N	15°	00',0	interpol	llations
	21:00	<i>340</i> °	00',0	N	15°	00',0		
calcul de l'angle horaire au méridien local	$AH_{ag} =$	300°	00',0			———	$AH_{ag} = A$	$1H_{ao}$ - G
calcul de l'angle au pôle	P =	060°	00',0	a a	stre à l'Es	st -	P = 360	- AHag
calcul de la hauteur estimée	$H_e =$	<i>011</i> °	44',9	→ H _e =	arcsin(sin	φ . sin D $+$	$\cos \varphi$. $\cos \varphi$	$D \cdot cos P$
calcul de l'azimut zénithal	$A_z =$	<i>058,7</i> °		Az = arc	ctan(sin P/	($\cos \varphi$. \tan	nD - $sin \varphi$.	cos P))
calcul de l'azimut	Z =	058,7°		a	stre à l'Es	<i>st</i> →	Z =	Az
			-					

c) La première droite de hauteur, à $10h00~T_{cf}$ est donnée à titre d'entraînement mais son calcul complet n'est pas demandé. En voici sa correction détaillée.

Droite de hauteur sur le Soleil, la Lune ou les Planètes



Calcul de l'heure de la méridienne

calcul de loxodromie entre 10h00 T_{cf} et l'heure de la méridienne

saisi	ie des in	formation.	s		méth	iode appr	ochée		méthode exacte						
po	position de départ			R	m	arphi , l	$arphi_{\it m}$	G, g	R	m	φ , l	Λ,λ	G, g		
φ_{A} =	15°	00,0'	S			-15,000°		-170,000°			-15,000°	-15,174°	-170,000°		
$G_{A}=$	170°	00,0'	E	075,0°	35,33333	00,152°		-00,589°	075,0°	35,33333	00,152°	00,158°	-00,589°		
élé	éléments de l'estime						-14,924°				-14,848°	-15,017°			
R_{s}	₅ =	075,0°		000,0°	0	00,000°		00,000°	000,0°	0	00,000°	00,000°	00,000°		
V_{S}	₅ =	20,0 no	d			-14,848°		-170,589°			-14,848°	-15,017°	-170,589°		
R_{c}	₂ =	000,0°	•		position d'arrivée					position d'arrivée					
V_{α}	₂ =	0,0 nd	!	arphi) _B =	14°	50,9'	S	φ	$oldsymbol{arphi}_{\scriptscriptstyle B}$ =		50,9'	S		
Dure	Durée = 1,46		utes	G		170°	35,3'	E	G	, _B =	170°	35,3'	E		

Calcul de la latitude méridienne

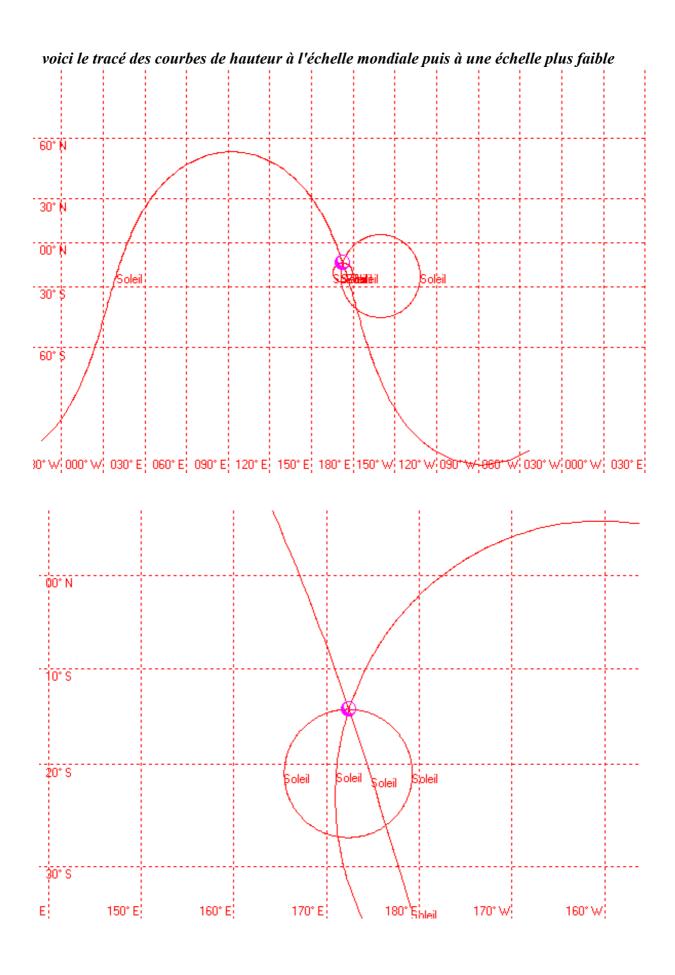
hauteur observée

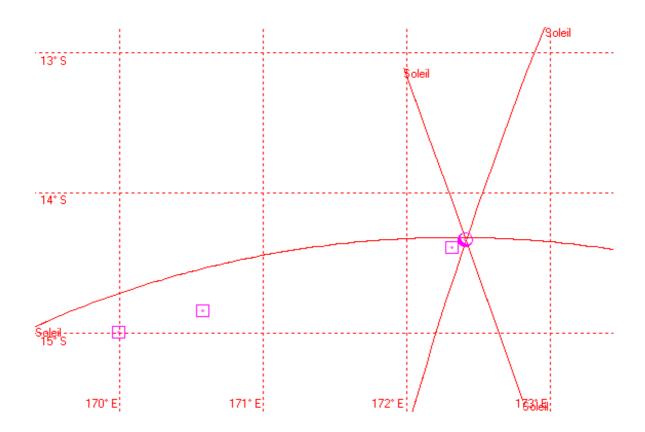
 $H_o = H_i + \varepsilon + c$

00',5

excentricité

						,		
heure de l'observation à Greenwich	$T_{cp} =$	0:40	5:45			$T_{cp} =$	$T_{cf} + f$	
			D				-	
calcul de la déclinaison	0:00	S	<i>21</i> °	14',0				
calcul de la decimaison	0:46:45	S	21°	13',6	····· interpo	llations		
	1:00	S	<i>21</i> °	13',5	<u> </u>			_
calcul de la distance zénithale	$N_v =$	006°	27',5		-	$N_v = \pm ($	90° - H _v)	
carear de la distance zentinare	T V	000	27,5	astre a	ıu Sud 🔸	sign	e +	
calcul de la latitude méridienne	$\phi_{\text{m\'eridienne}} =$	<i>014</i> °	46',1	S		ϕ méridienne $=$	$N_v + D$	


calcul de loxodromie entre l'heure de la méridienne et $17h00~T_{cf}$


saisie des in	formations			méth	iode appr	ochée		méthode exacte						
position d	le départ		R	m	arphi , l	$arphi_{\scriptscriptstyle{m}}$	G, g		R	m	φ , l	Λ,λ	G, g	
φ _A = 15°	00,0' S				-15,000°		-170,000°				-15,000°	-15,174°	-170,000°	
$G_{A}=$ 170°	00,0' E		075,0°	140	00,604°		-02,330°	d	975,0°	140	00,604°	00,624°	-02,330°	
éléments d	e l'estime					-14,698°					-14,396°	-14,550°		
$R_S =$	075,0°	_	000,0°	0	00,000°		00,000°	d	000,0°	0	00,000°	00,000°	00,000°	
$V_S =$	20,0 nd				-14,396°		-172,330°				-14,396°	-14,550°	-172,330°	
$R_{C}=$	000,0°	_	position d'arrivée						pos	sition d'ar	rivée			
$V_C =$	0,0 nd		arphi	_B =	14°	23,8′	S	φ _в = 14°			23,8'	S		
Durée =	7 heures , minutes		G	_B =	172°	19,8′	E	$G_{\scriptscriptstyle B}$ =		172°	19,8′	E		

calcul de la droite de hauteur de 17h00 T_{cf}

Droite de hauteur sur le Soleil, la Lune ou les Planètes

Droite de nauteur sur le Soleil, la Lune ou les Planetes												
excentricité	ε =	01',5			hauteur o	bservée	$H_o = H_i$	$+ \varepsilon + c$				
collimation	c =	-00',3				$H_o =$	<i>14</i> °	06',2				
1 ^{ère} correction	corr1 =	03',5			hauteur vraie	$H_v = H$	$I_o + coor1$	+ corr2				
2 ^{ème} correction	corr2 =	00',3		_		$H_v =$	<i>14</i> °	10',0				
hauteur intrumentale	$H_i =$	<i>14</i> °	05',0		2 ^{ème} correction		π					
heure de l'observation dans le fuseau local	$T_{cf} =$	17:0	00:00	1	pour la Lune	57',5	57',8	58',0				
latitude estimée à cet instant	$\phi_e =$	<i>14</i> °	23',8	S	<i>18,0</i> °	67',5	67',9	68′,1				
longitude estimée à cet instant	$G_e =$	172°	19',8	E	Ho + corrl = 14,16 °	68',3	corr2= 68',6	68',9				
numéro du fuseau	f =	-11			20,0°	67',1	67',5	67',7				
heure de l'observation à Greenwich	$T_{cp} =$	6:0	0:0				$T_{cp} =$	$T_{cf} + f$				
		A	AH_{ao}		D							
calcul de l'angle horaire à Greenwich	6:00	267°	41',8	S	<i>21</i> °	11',3						
et de la déclinaison	6:0:0	267°	41',8	S	21°	11',3	interpol	lations				
	7:00	282°	41',6	S	<i>21</i> °	10',8						
calcul de l'angle horaire au méridien local	$AH_{ag} =$	080°	01',6				$AH_{ag} = A$	$1H_{ao}$ - G				
calcul de l'angle au pôle	P =	080°	01',6	as	tre à l'Oue	est -	P = A	Hag				
calcul de la hauteur estimée	$H_e =$	<i>014</i> °	15',4	→ H _e =	arcsin(sin	φ . sin D +	$\cos \varphi$. \cos	D. cos P)				
calcul de l'azimut zénithal	$A_z =$	108,6°		Az = arc	ctan(sin P/	(cos φ . tai	n D - $\sin \varphi$.	cos P))				
calcul de l'azimut	Z =	251,4°	-	as	tre à l'Oue	est -	Z=36	0 - Az				
calcul de l'intercepte	i =	-5',4					$i = H_{\nu}$, - H _e				
acardonnáca do naint dátarminatif	$\int \phi_{\rm D} =$	<i>14</i> °	22',1	S	ENM	MMADO		MID				
coordonnées du point déterminatif	$G_D =$	172°	25',1	E	EINIMI	<u>u waksi</u>	EILLE PE	AVILD.				

tracé de l'échelle locale et des droites de hauteur autour du point estimé de 17h00 T_{cf} Finalement, le point astronomique à 17h00 T_{cf} est $\begin{bmatrix} a & = 14^{\circ} 20 & 2'S \end{bmatrix}$ d) l'heure de coucher n'est pas donnée le 15 janvier 2007, il faut donc interpoler entre la veille et le lendemain :

au coucher à
$$\varphi=48^\circ S$$
 et $G=000^\circ$ W le $14/01/07$ $19h58min00s$ T_{co} $Z_v=235,6^\circ$ au coucher à $\varphi=48^\circ S$ et $G=000^\circ$ W le $16/01/07$ $19h56min24s$ T_{co} $Z_v=236,6^\circ$ donc en faisant la moyenne sur l'heure et sur l'azimut, on obtient au coucher à $\varphi=48^\circ S$ et $G=000^\circ$ W le $15/01/07$ $19h57min12s$ T_{co} $Z_v=236,1^\circ$

Pour tenir compte de la longitude, on convertit G en heures et minutes : $163^{\circ}E / 15^{\circ/h} = -10h52min$ au coucher à $\varphi = 48^{\circ}S$ et $G = 163^{\circ}E$ le 15/01/07 $19h57min12s + (-10h52min) = 9h05min12s <math>T_{co}$

Enfin on exprime l'heure dans le fuseau du lieu T_{cf} : pour $G=163^{\circ}E$ on a=f=-11 au coucher à $\varphi=48^{\circ}S$ et $G=163^{\circ}E$ le 15/01/07 19h57min12s-(-11)=20h05min12s T_{cf}

Finalement, le 15 janvier 2007, vu de la position le soleil se couche à 20h05min12s T_{cf} dans l'azimut $Z_v = 236,1^{\circ}$

$$\begin{cases} \varphi_5 = 48^{\circ} S \\ G_5 = 163^{\circ} E \end{cases}$$

e) pour $G = 013^{\circ}13.8' W$ on a f = +1

le 15 janvier 2007, 13h13 T_{cf} + (+1) = 14h13 T_{co}

Dans les éphémérides, on lit et on interpole pour cette heure-là l'angle horaire sidéral à Greenwich : $AH_{so} = 327^{\circ}54,1'$

En corrigeant avec la longitude de l'observateur, on obtient l'angle horaire sidéral local $AH_{sg} = AH_{sg} - G = 327^{\circ}54,1' - 013^{\circ}13,8' = 314^{\circ}40,3'$

Avec cet angle horaire horaire sidéral local, on lit dans les tables A, B et C:

$$A = -3,4'$$

$$B = 0'$$

$$C = +0.2'$$

Alors
$$\emptyset = H_v + A + B + C = 42^{\circ} 37.8' + (-3.4') + 0' + 0.2' = 42^{\circ} 34.6^{\circ}$$

Puisque l'on voit l'étoile polaire, on est forcément situé dans l'hémisphère Nord. Finalement $\varphi = 42^{\circ}34,6'$ N

f) Pour la même date, heure et longitude que la question précédente, l'angle horaire sidéral local reste $AH_{sg} = 314^{\circ}40.3'$.

Avec $AH_{sg}=314^{\circ}40,3'$ et $\varphi=47^{\circ}$ N, on lit dans le tableau de l'azimut de l'étoile polaire $Z_v=001,0^{\circ}$ d'où le calcul de la variation $W=Z_v-Z_c=001^{\circ}-005^{\circ}$

Finalement $W = -4^{\circ}$

g) le changement de saison hiver / printemps correspond au passage du soleil dans le plan équatorial : à cet instant-là, le centre de la terre et celui du soleil sont alignés avec le point vernal γ . Donc la déclinaison du soleil est D=N 00°.

Cherchons à la date de l'équinoxe de printemps dans les éphémérides l'heure à laquelle la déclinaison du soleil s'annule :

le 21 mars 2007 à 00h00 T_{co}

 $D = S \theta \circ \theta \theta . 1$

le 21 mars 2007 à 01h00 T_{co}

 $D = N \theta \circ \theta \theta, 9$

Par interpolation, on obtient $D = N 00^{\circ} \text{ à } 00h06 T_{co}$

pour
$$G = 025^{\circ} W$$
 on a $f = +2$
 $T_{cf} = T_{co} - f = 00h06 - (+2) = 22h06 le 20 mars 2007$

Finalement, pour un observateur situé à la positon l'instant de début du printemps 2007 sera le 20 $G_5 = 37^{\circ} N$ mars 2007 à 22h06 $T_{cf.}$